Crystal Structures of the Acid Salts of Some Dibasic Acids. Part VII. ${ }^{1}$ An X-Ray Study of Potassium Hydrogen Acetylenedicarboxylate: the α-Form

By Ivan Leban and Ljubo Golic,* Chemistry Department, The University, 61000 Ljubljana, Yugoslavia (in part) J. Clare Speakman,* Chemistry Department, The University, Glasgow G12 80Q, Scotland

The title compound crystallises with $Z=4$ in a cell with $a=7.954, b=11.926, c=5.918 \AA, \beta=105.4^{\circ}$, space group $/ 2 / a$. The structure, refined to $R 6.0 \%$ for 796 reflexions, whose intensities were estimated visually, is of Type A_{2} : hydrogen-anions, lying across two-fold axes, are linked into infinite chains by very short hydrogen bonds which also lie across two-fold axes $[\mathrm{O} \cdots \mathrm{H} \cdot \mathrm{O} \cdot 2 \cdot 445(3) \AA$ A.

Acid salts of acetylenedicarboxylic acid ($\mathrm{H}_{2} \mathrm{adc}=$ $\left.\mathrm{HO}_{2} \mathrm{C} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{CO}_{2} \mathrm{H}\right)$ are being studied as part of a project for examining the acid salts of dicarboxylic acids in a

Figure 1 The i.r. spectrum of potassium hydrogen acetylene dicarboxylate, $\alpha-\mathrm{KH}(\mathrm{adc})$, in KBr disc
search for 'very short' hydrogen bonds. The acid potassium salt $\mathrm{KH}(\mathrm{adc})$ is of special interest because it
${ }^{1}$ Part VI, A. L. Macdonald and J. C. Speakman, J.C.S. Perkin II, 1972, 942.

2 E. Bandrowski, Ber., 1877, 10, 841.
contains only the one hydrogen atom likely to be involved in $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bonding, which should simplify the interpretation of its spectrum. $\mathrm{KH}(\mathrm{adc})$ has been known for about a century. ${ }^{2}$ Its i.r. spectrum (Figure 1) is of Hadži's Type (ii), ${ }^{3}$ which suggested that the crystal structure would probably (though not certainly) be of the symmetrical Type $A_{2}{ }^{4}$

EXPERIMENTAL

KH (adc) was prepared by evaporation of an aqueous solution of the commercial material. Good crystals of prismatic habit were obtained from 50% (w) aqueous methyl cyanide. Crystal data were obtained by use of $\mathrm{Cu}-K_{\alpha}$ radiation $\left[\lambda\left(\alpha_{1}\right)=1 \cdot 5405 \AA\right]$, with a least-squares treatment of high-order reflexions whose $\sin \theta$ values were compared with those due to powder-lines of Al-wire, for which a was taken as $4 \cdot 04907 \AA$.

Crystal Data. $-\mathrm{KHC}_{2} \mathrm{O}_{4}, M=152 \cdot 2$. Monoclinic, $a=$ $7.954(2), b=11.926(2), c=5.918(2) \AA, \beta=105 \cdot 40(0.02)^{\circ}$,
${ }^{3}$ D. Hadži, Pure and Appl. Chem., 1965, 11, 435.
${ }^{4}$ M. Currie and J. C. Speakman, J. Chem. Soc. (A), 1970, 1923.
$U_{\mathrm{o}}=541.3 \AA^{3}, D_{\mathrm{m}}=1.84(3), Z=4, D_{c}=1.867 . \quad \mu(\mathrm{Cu}-$ $\left.K_{\alpha}\right)=79 \mathrm{~cm}^{-1} . \mu\left(\mathrm{Mo}-K_{\alpha}\right)=8.9 \mathrm{~cm}^{-1}$. Diffraction symbol ${ }^{5} I^{*} / a$: the space group $I 2 / a$ (No. 15), which was implied by the Pattersion function, has been borne out by the structure analysis. Our choice of axes corresponds to the equivalent positions $\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \pm(x, y, z ; x,-y$, $\frac{1}{2}+z$).

Samples of $\mathrm{RbH}(\mathrm{adc})$ and $\mathrm{NH}_{4} \mathrm{H}(\mathrm{adc})$ were also made in Ljubljana. They proved to be isomorphous with the α-form of $\mathrm{KH}(\mathrm{adc})$ described here. Their crystal data are more conveniently given in the ensuing paper (Part VIII).

Structure Analysis.-Intensities were estimated visually for ca. 2100 reflexions recorded on multiple-exposure sets of precession photographs, by use of Mo- K_{α} radiation. Reci-procal-lattice nets covered were $h k 0-2, h 0-3 l$ and $0-3 k l$, together with diagonal nets $h k l$ up to fifth order. After the usual corrections, cross-scaling and averaging, 796 independent structure amplitudes were obtained, 96% of those that would have been accessible to Cu -radiation.

With $Z=4$, the space group $I 2 / a$ requires the potassium ion, the hydrogen atom, and the mid-point of the triple bond to lie in special positions. The unsharpened Patterson function was successfully interpreted on the basis that each of these three structural features occupied a set of four-fold positions, $0, y, 4[(e)$ of ref. 6]. Positions for all the atoms, except hydrogen, were also easily found from the Patterson function. Refinement was by full-matrix least-squares, using a version of the program ORFLS modified by Shiono. ${ }^{7}$ In the later cycles anisotropic vibrational parameters were allocated to all atoms other than hydrogen, and 12 scalefactors were refined. The weighting-scheme, due to Cruickshank, ${ }^{8}$ had $w=\left(A+B\left|F_{0}\right|+C\left|F_{0}\right|^{2}\right)^{-1}$; the constants were adjusted during refinement, and had values $A=0.18, B=0.02$, and $C=0.01$ in the final cycles. Atomic scattering factors ${ }^{6}$ included an anomalous-dispersion correction for K^{+}. At convergence R was 6%, with $R^{\prime}\left(=\left[\Sigma w \Delta^{2} / \Sigma w\left|F_{0}\right|^{2}\right]^{3}\right) \mathbf{9 . 9 \%}$. Structure-amplitudes are listed in Supplementary Publication No. SUP 20654 (2 pp., 1 microfiche). \dagger Table 1 contains an agreement analysis.

Table 1

Analysis of agreement between observed and calculated structure amplitudes at the end of the refinement. Structure amplitudes are on the absolute scale $\Sigma\left|F_{\mathrm{c}}\right| /$ $\Sigma\left|F_{0}\right|=1.004$

Range of $\sin \theta$	$N *$	$R(\%)$	$\overline{w \Delta^{2}}$
$0 \cdot 0-0 \cdot 1$	5	$7 \cdot 3$	$1 \cdot 13$
$0 \cdot 1-0 \cdot 2$	46	$7 \cdot 2$	$1 \cdot 19$
$0 \cdot 2-0 \cdot 3$	116	$5 \cdot 0$	$0 \cdot 61$
$0 \cdot 3-0 \cdot 4$	228	$5 \cdot 5$	0.79
$0 \cdot 4-0 \cdot 5$	296	$6 \cdot 2$	$0 \cdot 48$
$0 \cdot 5-0 \cdot 6$	103	$7 \cdot 5$	$0 \cdot 43$
$0 \cdot 6-0 \cdot 7$	2	$12 \cdot 5$	0.78
$*$	N is the no. of reflexions of the group.		

DISCUSSION

Description of the Structure.-Figures 2 and 3 show the main features of the structure, and explain the atom-

[^0]numbering scheme. Final positional and vibrational parameters are listed in Tables 2 and 3.

Figure 2 The structure of $\alpha-\mathrm{KH}(\mathrm{adc})$ in its c-axial projection

Figure 3 The hydrogen-anion in its b-axial projection
KH (adc), in the α-form, is a clear example of a Type $A_{\mathbf{2}}$ acid salt. It consists of hydrogen-anions, linked at either end by short hydrogen bonds into infinite chains

Table 2
Fractional co-ordinates $\left(\times 10^{5}\right)$ of atoms in the crystal chemical unit (CCU) with standard deviations in parentheses

	x	y	z
$\mathrm{~K}^{+}$	50000	$32833(8)$	25000
$\mathrm{O}(1)$	$26076(25)$	$17080(17)$	$101319(51)$
$\mathrm{O}(2)$	$13804(25)$	$6870(17)$	$69585(34)$
$\mathrm{C}(1)$	$26685(25)$	$11796(17)$	$83883(34)$
$\mathrm{C}(2)$	$43227(25)$	$10853(25)$	$77509(51)$
H	0	$9139(520)$	75000

Table 3
Vibrational parameters ($U_{i j}$ are the tensor components for mean-square amplitude as $10^{-4} \AA^{2}$) with standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{~K}^{+}$	$295(5)$	$386(5)$	$272(10)$	0	$106(2)$	0
$\mathrm{O}(1)$	$308(9)$	$464(11)$	$378(13)$	$-73(7)$	$158(8)$	$-151(8)$
$\mathrm{O}(2)$	$211(8)$	$421(10)$	$317(12)$	$-14(6)$	$96(6)$	$-68(7)$
$\mathrm{C}(1)$	$197(10)$	$289(11)$	$322(14)$	$12(7)$	$116(8)$	$13(7)$
$\mathrm{C}(2)$	$210(10)$	$376(13)$	$344(15)$	$-26(9)$	$117(8)$	$-39(9)$
$\mathrm{H}[\mathrm{B}=3.0$ (isotropic)].						

[^1]in the x direction. The crystal symmetry elements at the centre of the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bond and of the $\mathrm{C}: \mathrm{C}$ bond are both digonal axes. Formal differences occur in other Type A_{2} structures: in potassium hydrogen malonate, ${ }^{9}$ there is a digonal axis at the middle of the anion and a centre of inversion at the middle of the hydrogen bond, whilst in potassium hydrogen succinate, ${ }^{10}$ the arrangement is converse.

The hydrogen bond has $\mathrm{O} \cdots \mathrm{O} 2 \cdot 446(3) \AA$, a value virtually identical with that reported for potassium hydrogen glutarate and in good agreement with the weighted average of $2 \cdot 451(2) \AA$ for six Type A_{2} acid salts. ${ }^{1}$ The simple and highly symmetrical structure of $\mathrm{KH}(\mathrm{adc})$, with this very short $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bond, matches the simple spectrum sketched in Figure 1.

The dimensions of the carboxylate group are included in Table 4. They are normal for a Type A crystal.

Table 4
Principal interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

Roman numerals as superscripts refer to the following equivalent positions relative to the CCU at x, y, z :

$$
\begin{array}{lc}
\text { I } 1-x, y, 1 \frac{1}{2}-z & \text { V } \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}-z \\
\text { II } x, y,-1+z & \text { VI } \frac{1}{2}+x, \frac{1}{2}-y, z \\
\text { III } \frac{1}{2}-x, \frac{1}{2}-y, 1 \frac{1}{2}-z & \text { VII }-x, y, 1 \frac{1}{2}-z \\
\text { IV } \frac{1}{2}+x, \frac{1}{2}-y,-1+z &
\end{array}
$$

The mean plane of the four atoms $\mathrm{C}(1), \mathrm{C}(2), \mathrm{O}(\mathrm{I})$, and $\mathrm{O}(2)$ is represented by: $0.0683 X^{\prime}-0.8362 Y+0.5442$ $Z^{\prime}=1.4776 \AA$.* The largest deviation from this plane is $0.005 \AA$ for $C(1)$; none of the deviations is significant.

The dihedral angle between the planes of the carboxygroup of the $\mathrm{H}(\mathrm{adc})^{-}$anion is 66°. This is in contrast to their coplanarity in the dihydrate of the free acid. ${ }^{11}$ However, rotation about a $\mathrm{C} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{C}$ is probably free, so that the dihedral angle is dictated by environmental

* X^{\prime}, Y, and Z^{\prime} are absolute co-ordinates with respect to orthogonal axes; $X^{\prime}=a x+c z \cos \beta, Y=b y$, and $Z^{\prime}=c z \sin \beta$.
- J. G. Sime, J. C. Speakman, and R. Parthasarathy, J. Chem. Soc. $(A), 1970,1919$.

10 A. McAdam, M. Currie, and J. C. Speakman, J. Chem. Soc. (A) , 1971, 1994.
conditions. That the $C(1)-C(2)-C\left(2^{I}\right)$ and the, equivalent, $\mathrm{C}(2)-\mathrm{C}\left(2^{\mathrm{I}}\right)-\mathrm{C}\left(\mathbf{1}^{\mathrm{I}}\right)$ angles differ very significantly from 180° may also be ascribed to packing.

The environment of the potassium ion is shown in Figure 4. It will be discussed in more detail in Part

Figure 4 The environment of the potassium ion in $\alpha-\mathrm{KH}$ (adc)
VIII. The three independent $\mathrm{K}^{+} \cdots \mathrm{O}$ distances are included in Table 4.

APPENDIX

Stimulated by a comment made by one of the Referees, we wish to amplify our discussion of the hydrogen bonding. The hydrogen atom was constrained to remain on a twofold axis, but its y co-ordinate was allowed to vary. At convergence it had moved to a point $0 \cdot 27 \AA$ above the level of $\mathrm{O}(2)$ and $\mathrm{O}\left(2^{\mathrm{VII}}\right)$, so that the ostensible value for the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ angle is 156°. We regard this result as unacceptable in so short a hydrogen bond, and as yet another example of the pitfalls which beset the X-ray location of hydrogen atoms in special positions. ${ }^{12}$ Potassium hydrogen succinate has a short $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bond of identical symmetry. ${ }^{10}$ In our X-ray work on this structure we constrained the y co-ordinate of the hydrogen to follow y for the oxygen atoms. In the neutron-diffraction refinement y was allowed to vary independently, but it converged to a value not significantly different from that of the oxygen atoms.

We thank Professor G. A. Jeffrey of Pittsburgh, who made it possible for Lj . G. to use certain IBM 7090 and 1130 crystallographic programs necessary for the completion of this work.
[2/2196 Received, 20th September, 1972]

[^2]
[^0]: \dagger For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . are supplied as full size copies).
 ${ }^{5}$ J. D. H. Donnay and O. Kennard, Acta Cryst., 1964, 17, 1337.

 6 ' International Tables for X-Ray Crystallography,' vols. I and III, Kynoch Press, Birmingham, 1952.

[^1]: 7 R. Shiono, Oak Ridge Least-Squares Program, modified for the Department of Crystallography of the University of Pittsburgh, 1966.
 ${ }_{8}$ D. W. J. Cruickshank, in 'Computing Methods and the Phase Problem in X-Ray Crystal Analysis,' Pergamon Press, Oxford, 1961, p. 45.

[^2]: 11 J. D. Dunitz and J. M. Robertson, J. Chem. Soc., 1947, 148.
 12 A. L. Macdonald, J. C. Speakman, and D. Hadži, J.C.S. Perkin II, 1972, 825.

